Drivers and barriers to energy-efficient technologies (EETs) in EU residential buildings


To achieve carbon targets, the European Union (EU) aims to promote nearly zero-energy buildings (nZEB). To enable the necessary transition, technical solutions need to converge with socio-economic factors, such values and awareness of stakeholders involved in the decision-making process. In this light, the aim of this paper is to characterise perceived drivers and barriers to nine energy-efficient technologies (EET), according to key decision-makers’ and persuaders of the technology selection in the EU residential building context. Results are collected across eight EU countries, i.e. Belgium (BE), Germany (DE), Spain (ES), France (FR), Italy (IT), Netherlands (NL), Poland (PL), and United Kingdom (UK). The stakeholders’ selected are architects, construction companies, engineers, installers and demand-side actors. Data from a multi-country survey is analysed to calculate the share of 15 drivers and 21 barriers (aggregated to 5 groups), being selected for each EET and country. The 5 groups considered to analyse drivers and barriers are environmental, technical, economic, social, legal. The perceived barriers and drivers were further studied for their association across the countries using the Pearson’s Chi2 and a Cramer’s V tests. The results demonstrate that across all EETs and countries, the technical and economic driver groups are perceived to have the highest potential to increase the implementation rate of EET. In terms of barriers, economic aspects are seen as the foremost reason that EET are not scaling faster. In both drivers and barriers legal aspects are the least often selected. In overall the barrier groups show significant variation across countries compared to driver groups. These findings provide an evidence-basis to better understand arguments in favour and against specific EETs and, in this way, support policy makers and other interested parties to increase the market share of the selected solutions.

Energy and Built Environment
Leonardo Rosado
Leonardo Rosado
Associate Professor

Studying cities from an Urban metabolism perspective. Its flows and stocks, its functions and needs. To provide information towards urban planning and circular economy.